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Abstract

This paper provides a study of the implications for economic dynamics when
the central bank sets its nominal interest rate target in response to variations
in wage inflation. I provide results on the existence, uniqueness, and stability
under learning of rational expectations equilibrium for alternative specifica-
tions of the manner in which monetary policy responds to economic shocks
when nominal rigidities are present. Monopolistically competitive producers
set prices via staggered price contracts, and households set nominal wages
in the same fashion. In this setting, the conditions for determinacy and
learnability of rational expectations equilibrium differ from a model where
only prices are sticky. I find that when the central bank responds to wage
and price inflation and to the output gap, a Taylor principle for wage and
price inflation arises that is related to stability under learning dynamics. In
other words, a moderate reaction of the interest rate to wage inflation helps
to avoid instability under learning and indeterminacy.
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1. Introduction

The New Keynesian model has become a workhorse for the study of monetary
policy in recent years. In this model, the behavior of private agents depends not
only on current policy but also on the expected course of monetary policy. Mone-
tary models typically assume that authorities adopt either linear feedback monetary
rules (Taylor-type rules) or optimal monetary policy rules in an attempt to control
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the economy. However, the role of said rules in stabilizing the economy has been
criticized because of their potential to induce indeterminacy or very large sets of
rational expectations equilibria. If the central bank follows a rule that leads to mul-
tiple equilibria, agents might be incapable of coordinating on a specific equilibrium;
even when capable of such coordination, this equilibrium might not be targeted by
the central bank due to its undesirable characteristics.2

Alternatively, under certain conditions, agents can “learn” the desirable equi-
librium targeted by the central bank and eventually converge to the rational expec-
tations equilibrium (REE). Agents “learn” the equilibrium of the model by making
forecasts based on recursive least squares techniques and the data obtained from
the economy. These forecasts replace rational expectations (RE) in the model. In
this context, the expectational stability (E-stability) concept discussed in Evans
and Honkapohja (1999) and (2001) is applied in order to determine whether ratio-
nal expectations equilibria are stable under learning dynamics.3 When equilibria
are E-stable, even when there are discrepancies between the agents’ expectations
and expectations required to yield a determinate REE, the system will converge to
the REE. Therefore, designing rules that lead to learnable equilibria is desirable.
Evans and McGough (2005a) studied determinacy and learnability conditions as
selection criteria. Bullard and Mitra (2002, BM hereafter), derived determinacy
and learnability conditions for monetary policy linear feedback rules, and Evans
and Honkapohja (2003) determine the same conditions for optimal rules.4 Others
have examined them for open-economy models.5

Recent work has shown that staggering of nominal wage contracts is impor-
tant to give rise to the key frictions that render monetary policy non-neutral. In
fact, Christiano et al. (2005) conclude that wage stickiness—not price stickiness—
appears more important in explaining output and inflation dynamics. Models that
consider only sticky prices and not sticky wages have been criticized for producing
“too sharp a real-wage decline in response to a tightening of monetary policy” as

2The large multiplicity of solutions and its harmful implications including equilibrium
responses to shocks to fundamentals and sunspot states that could lead to arbitrarily
large fluctuations in endogenous variables, have been widely discussed in Bullard and
Mitra (2002), and Woodford (1999) and (2003).

3“Learnability,” “E-stability,” “stability under learning” are synonyms in the current
text.

4They propose that central banks should adopt an optimal policy rule that includes
both expectations and fundamentals to ensure determinacy and learnability of the REE.

5Authors include Llosa and Tuesta (2008), Bullard and Schaling (2009), Bullard and
Singh (2008), Zanna (2009), and Wang (2006). These authors examine rules that respond
to exchange rate movements. Moreover, extensions of the model that consider determinacy
and Expectational stability of REE when long-term interest rates are included in the model
are studied in McGough et al. (2005), and Kurozumi and Van Zandweghe (2008). Duffy
and Xiao (2011) and Pfajfar and Santoro (2012) examine these rules in the context of
models featuring physical capital. Evans and Honkapohja (2009) provide a comprehensive
overview of recent literature on expectations, learning, and monetary policy.
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addressed in Christiano et al. (1999). Christiano et al. (2005), Altig et al. (2011),
and Smets and Wouters (2007) further conclude that impulse response functions af-
ter a monetary policy shock are best fit by the model with staggered wage contracts.
This explanation validates wage stickiness as an important factor in explaining the
real effects of monetary policy.

BM evaluate alternative monetary policy rules in the context of determinacy
and E-stability in a standard New Keynesian model under price rigidity but wage
flexibility. The authors conclude that the equilibria can be learnable when the
central bank raises its interest rate instrument more than one-for-one with increases
in inflation. This condition is referred to the “Taylor principle condition.” It is
not obvious that an optimizing-agent model with staggered nominal wage setting
in addition to staggered price setting would yield determinacy and expectational
stability (E-stability) conditions similar to a model in which only prices are sticky.
One reason is that the volatility of aggregate wage inflation induces inefficiencies
in the distribution of employment across households (Erceg et al., 2000). For that
reason, this paper builds on BM and develops a comprehensive and systematic
study of the determinacy and E-stability properties of the New Keynesian model
under both price and wage rigidity. In particular, its contribution is to evaluate
the E-stability properties of different monetary policy rules that embed an explicit
response to wage inflation. Previous studies had concentrated only on documenting
the determinacy properties of the staggered prices and wages model (see, e.g.,
Flaschel et al., 2008; and Franke and Flaschel, 2009; Gaĺı, 2008). Gaĺı (2008),
through a numerical experiment, finds that if the interest rate reacts more than
one to one to contemporaneous price inflation or wage inflation, then the REE is
determinate. Flaschel et al. (2008) and Franke and Flaschel et al. (2009) confirm
this result analytically by reformulating the model in continuous time.

This paper also relates to Huang et al. (2009), Ascari et al. (2011), and
Carlstrom and Fuerst (2007), who study wage rigidities as a “special case” of their
models. Huang et al. (2009) initially present a sticky price model with endogenous
investment and find that incorporating both sticky wages and firm-specific capital
makes the determinacy region quite large. Carlstrom and Fuerst (2007) analyze
whether monetary policy should respond to asset prices in a model with price and
wage stickiness from the point of view of equilibrium determinacy. They conclude
that equilibra are likely to be indeterminate when the central bank adjusts policy
in response to asset price movements. Lastly, Ascari et al. (2011) present an
estimated monetary policy rule that includes a time-varying trend inflation and
stochastic coefficients in a New Keynesian model for the U.S. economy and study
its determinacy properties. Results suggest that including wage stickiness makes
the determinacy region very sensitive to trend inflation. However, none of these
papers focus on E-stability in the presence of wage stickiness.

The analysis presented in this paper views the short-term interest rate as the
instrument of monetary policy design. The policy-design problem lies in character-
izing how the interest rate should respond to changes in wage and price inflation
to induce a learnable equilibrium given that both prices and wages exhibit rigidi-
ties. Wage inflation provides information about the rate of core inflation (De Long,
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1997). Having a central bank that targets wage inflation in its policy rule is desir-
able because such rules (i) are welfare enhancing, performing nearly as well as the
optimal rule, (Casares, 2007; Canzoneri et al., 2005; Erceg et al., 2000; Levin et al.,
2006; Marzo, 2009)6; (ii) are simple (Levin et al., 2006) and have a good empirical
fit to the data (Casares, 2007); and (iii) maximize economic stability (Mankiw and
Reis, 2003). The underlying reason why wage inflation targeting is so desirable in
the presence of price and wage rigidities is that wage rigidities create cross-sectional
wage dispersion across households, which leads to inefficiencies in hiring decisions.
In this setting, the cost of aggregate employment volatility is amplified. Stabilizing
wage inflation eases wage dispersion and decreases the inefficiencies in employment.

The main results of this paper are twofold. First, a Taylor principle condition for
wage and price inflation emerges when the central bank responds to wage inflation,
price inflation, and the output gap. When the central bank adjusts its interest rates
positively and more than one for one with changes in price and/or wage inflation
above target, a “leaning against the wind” policy is followed. If agents do not
have RE and they form forecasts using least squares learning, then such policy
from the central bank pushes the equilibrium toward the REE. Thus, a leaning
against the wind policy for a combination of wage and price inflation when agents
form forecasts using least squares learning is closely linked to learnable equilibria.
This result holds when interest rates respond to current data and forward-looking
expectations. Second, there are instances in which having a central bank that
responds mainly to wage inflation is preferable to responding to price inflation in
its policy rule. Specifically, if the relative role of wage stickiness is more important
in practice than the role of price stickiness, responding primarily to wage inflation
in the policy rule results in a larger determinacy and E-stability regions of the
parameter space. Responding to wage inflation, in this setting, relaxes the upper
bound constraint on the response to wage inflation that appears in forward looking
and lagged rules which ensures determinacy and E-stability.

From a welfare theoretic perspective, Erceg et al. show that the welfare cost
of wage inflation volatility increases with the mean duration of wage contracts.
They advocate implementing mixed rules that respond to wage and price inflation.
To conclude, the result presented here supports Erceg et al. (2000) and Mankiw
and Reis (2003) in the sense that it is desirable to design rules that respond to a
combination of price and wage inflation due to their potential to induce determinacy
and E-stability.

The rest of this paper is structured as follows. Section 2 presents the model,
the alternative policy rules studied under the analysis, and the general conditions
for E-stability akin to the model. Section 3 presents results on determinacy and
learnability of equilibrium under alternative policy rules for a model with wage and
price stickiness. Section 4 concludes.

6When the policymaker strictly targets price inflation in a model that includes stag-
gered wage setting, there is a considerably large welfare loss due to substantial variation
in the nominal wage inflation and the output gap.
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2. The Environment

2.1. The Model

The structural equations of the supply side of the model are from Woodford
(2003) (chapter 8, section 2.2), as follows:

πt = β Êtπt+1 + κp(xt + ut) + ξp(wt − wnt ), (1)

πwt = β Êtπ
w
t+1 + κw(xt + ut) + ξw(wnt − wt), (2)

wt = wt−1 + πwt − πt, (3)

where κp ≡ ξpωp and κw = ξw(ωw + σ−1), where ξp =
(1−αp)(1−αpβ)
αp(1+ωpθp)

and ξw =
(1−αw)(1−αwβ)
αw(1+vθw) .

Here πwt is nominal wage inflation, wt is the log real wage, wnt represents ex-
ogenous variation in the natural real wage, xt is the output gap, ut is treated as an
exogenous i.i.d. shock with variance σ2

u, and Ê represents (possibly nonrational)
expectations. The terms ξp, ξw, κp, and κw are all positive. Prices and wages are
adjusted à la Calvo, where 1−αp (1−αw) is the time-independent probability that
each of the prices (wages) is adjusted each period. The parameter ξp represents the
sensitivity of goods-price inflation to changes in the average gap between marginal
cost and current prices; it is smaller as prices are stickier (αp). The parameter ξw
indicates the sensitivity of wage inflation to changes in the average gap between
households’ “supply wage” (the marginal rate of substitution between labor supply
and consumption) and current wages, and it is a function of the Calvo parameter
that denotes wage stickiness in the economy (αw). ωp > 0 represents the elasticity
of supply wage with respect to the quantity supplied at a given wage, while ωw > 0
measures the elasticity of the supply wage with respect to the quantity produced;
holding fixed households’ marginal utility of income, σ > 0 is the inverse of the
intertemporal elasticity of substitution. Eqs. (1) and (2) are Phillips curves for
prices and wages. Eq. (3) is an identity for the real wage (wt = Wt/Pt) expressed
in logs and was rearranged in this form to provide a law of motion for the log of
nominal wages.

The dynamic IS-type equation is described by

xt = Êtxt+1 − σ(it − Êtπt+1 − rnt ), (4)

where it is the nominal interest rate and rnt is an exogenous i.i.d. shock with variance
σ2
rn .7 Monetary policy is represented by a Taylor-type rule that responds to price

7The exogenous shock rnt has been defined as an exogenous stochastic term that follows
an AR(1) process in previous literature. This specification could potentially impact the
E-stability conditions of the model. I abstain from this representation to avoid further
complications in the derivation of the E-stability conditions of the model.
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inflation, wage inflation, and the output gap. The monetary policy parameters are
denoted by ψπw , ψπ, and ψx. The baseline specification is

it = ψππt + ψπwπ
w
t + ψxxt. (5)

This will be called the contemporaneous data specification because policymakers
respond to contemporaneous data in their policy rules, and only the private sector
forms expectations about future values of endogenous variables. The model con-
sists of Eqs. (1)− (5), they represent log-linear approximations of the equilibrium
conditions outlined in Woodford (2003) and characterize only equilibria involving
fluctuations around a zero inflation steady state.

2.2. Alternative Policy Rule Specifications
In addition to the baseline specification, I explore the determinate and E-stable

regions of the parameter space when policymakers respond to possibly nonrational
expectations of the policy variables, and lagged data in the policy rule with and
without policy inertia. The first two specifications pertain to the cases without
policy inertia:

This specification includes a policy function where the interest rate responds
to current forecasts of one-quarter-ahead output gap, price inflation rate, and wage
inflation rate. Forecast based rules describe well the conduction of monetary policy
for the United States after 1979 as described in Best and Kapinos (2015) and Gali
and Gertler (1998). This forward-looking policy function is represented by

it = ψπÊtπt+1 + ψπw Êtπ
w
t+1 + ψxÊtxt+1 + ψiit−1. (6)

where the term ψi = 0. The model now consists of Eqs. (1)-(4), and Eq. (5) is
replaced by Eq. (6).

Alternatively, the central bank is more likely to respond to past data of the
variables included in the policy function because contemporaneous data from the
quarter in which they need to make policy decisions are rarely available. Specifically,
the central bank has readily available data from the past quarter to which the
interest rate should respond. For that reason, I include a policy function that
responds to last-quarter data of the output gap, price inflation, and wage inflation.
Equation (5) is now replaced by

it = ψππt−1 + ψπwπ
w
t−1 + ψxxt−1 + ψiit−1. (7)

where ψi has also been set to 0.
As has been widely addressed in the literature (Bullard and Mitra, 2007; Dennis,

2006; Evans and McGough, 2005c; Cukierman, 1989; and Brainard, 1967), rules
that respond cautiously to inadvertent changes in economic conditions are desirable.
This caution can be modeled by having a central bank that responds to inertia on
its policy rule. Equation (6) presents a forward-looking policy function with policy
inertia in which the interest rate instrument responds to changes in the forecasts
of price and wage inflation, and the output gap, as well as the lagged interest rate.
Alternatively, Eq. (7) represents a policy rule in which the central bank responds
not only to lagged variables, but also to a lagged interest rate term.
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2.3. Determinacy

RE are viewed as a two-sided equilibrium in which expectations influence the
time path of the economy and the time path of the economy affects expectations.
A model is said to be determinate if it has a unique dynamically stable REE. The
general conditions for determinacy are outlined below. Consider a general class of
models:

yt = α+BEtyt+1 + δyt−1 + κet (8)

where yt is an n × 1 vector of endogenous variables; et is a vector of white noise;
and B, δ, and κ are n× n matrices of coefficients.

For determinacy analysis the δ matrix in (8) has been set to zero. In order to
yield determinacy, the number of free variables in the model needs to be equal to
the number of eigenvalues of matrix B with absolute value less than 1. Otherwise,
the equilibrium is indeterminate.

When the model yields indeterminacy, there are multiple possible responses
of the endogenous variables to shocks to fundamentals, some of which can create
amplified economic fluctuations. However, endogenous variables can also respond
to “sunspots” or extraneous random variables with no fundamental significance.
Previous literature studies such as Evans and Honkapohja (2001) and Evans and
McGough (2005b) discuss the existence of models in which the solutions depend on
sunspots.8

2.4. Learning Methodology

The general conditions for E-stability are outlined below. Following the lit-
erature on learning in macroeconomics (e.g., Evans and Honkapohja, 2001) and
considering a general class of models represented by Eq. (8) the MSV solutions
take the form

yt = a+ byt−1 + cet, (9)

with corresponding expectations

Etyt+1 = (I + b)a+ b2yt−1 + bcet. (10)

Inserting equation (10) into equation (8), it follows that the MSV solutions satisfy

(I −Bb−B)a = α, (11)

Bb2 − b+ δ = 0, (12)

(I −Bb)c = κ. (13)

8In “regular” cases, these solutions are explosive, but in “irregular” cases, they are
stationary. A regular linear model assumes that there exists a unique stationary REE.
By contrast, in an irregular linear model, multiple stationary solutions are possible, par-
ticularly solutions that depend on sunspots. Changes in the variable (sunspot) could
trigger self-fulfilling shifts in expectations and in the fundamentals in the model, creating
disproportionately large fluctuations in the economy.
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The actual law of motion (ALM) takes the form

yt = α+B(I + b)a+ (Bb2 + δ)yt−1 + (Bbc+ κ)et. (14)

To determine E-stability, I consider equation (9) as the PLM and the mapping from
PLM to ALM takes the form

T (a, b, c) = (α+B(I + b)a,Bb2 + δ,Bbc+ κ). (15)

The expectational stability is determined by the following matrix differential equa-
tion:

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c). (16)

In order to analyze the local stability of system (16) at a RE solution a, b c, the
system is linearized at that RE solution. The E-stability conditions are governed by
the equation for a, b, c in (14). Using the rules for vectorization of matrix products,
I compute

DTa(a, b) = B(I + b), (17)

DTb(b) = b′ ⊗B + I ⊗Bb, (18)

DTc(b, c) = I ⊗Bb. (19)

A particular MSV solution (a, b, c) is E-stable if the MSV fixed point of the differ-
ential equation (15) is locally asymptotically stable at that point. Proposition 10.3
in Evans and Honkapohja (2001) states the conditions for E-stability of the MSV
solution.

2.5. Parameters

In most cases analytic results are not tractable and so I proceed numerically as
in Gaĺı (2008), Evans and McGough (2007), and Bullard and Mitra (2007). The
model was calibrated with parameter values from Amato and Laubach (2004).9

They estimated impulse responses of wages and prices to a monetary policy shock.
These parameters are considered the baseline calibration. The robustness of results
are also verified under the alternative calibration from Giannoni and Woodford
(2003).

In order to illustrates the learnable and/or determinate regions of the parameter
space for the Taylor rule specifications previously outlined, Figures 1–5 are drawn
in (ψx, ψπ) space with all the other parameters set to their baseline values except
for ψπw = 0, 0.5, 1, and 1.5 and ψi = 0, 0.65, and 5. The wage inflation parameter
value of 0 corresponds to a rule where the interest rate is responding only to price
inflation and the output gap—the BM result. The values 0.5 and 1 correspond to
a rule with a moderate to aggressive response to wage inflation in addition to the

9The authors extend the analysis of Rotemberg and Woodford (1997) by adding a real
wage series to a VAR.
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Parameters Amato and Laubach (2004)

β 0.99
ωp 0.33
ωw 0.27
ξp 0.058
ξw 0.066
σ 1/0.26
ψπ 0, 0.5, 1, 1.5
ψπw 0, 0.5, 1, 1.5

Table 1: Parameter Values Baseline Calibration

response to the output gap and price inflation. In various estimations of a Taylor
rule for the United States, where the short-term interest rate responds to price
inflation and the output gap, the coefficient for price inflation was 1.5 and for the
output gap was 0.5. These parameter values were found to characterize U.S. policy
between 1987 and 1992 as addressed in Woodford (2003). The parameter value
of 1.5 was the largest value chosen because it is within the range of reasonable
policy parameter values, although the price inflation policy coefficient has often
been estimated to be greater than 1.5.

Additionally, I discuss the learnable and/or determinate regions in the (ψx,
ψπw) space for ψπ = 0 when responding uniquely to wage inflation and the output
gap results in different determinate/E-stable regions from those obtained under a
purely price inflation and output gap stabilization goal. This perspective allows me
to perform a sensitivity analysis using two-dimensional snapshots of regions in the
three-dimensional space (ψx, ψπ, and ψπw).

3. Policy Rules under Determinate and Learnable Equilibria

3.1. Contemporaneous Data in the Policy Rule

3.1.1. Determinacy
The model can be simplified by substituting the policy rule (5) into (4) and

writing the system involving the endogenous variables xt, πt, π
w
t , and wt−1 given

by Eqs. (1), (2), (3), and (4) in the form of Eq. (8) (with δ set to zero), reproduced
here for convenience:

yt = α+BEtyt+1 + κet (20)

where yt=[xt, πt, π
w
t , wt−1]′, α = wnt , et=[rt

n, ut]′, and matrix B is defined as in
Appendix A.

In this setting, xt, πt, and πwt are free variables. For that reason, three of
the four eigenvalues of the system need to be inside the unit circle for determinacy;
otherwise, the equilibrium is indeterminate. Of note, the parameter space consistent
with determinate equilibrium is identical to the one with E-stability.
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3.1.2. Learning
I assume that yt is not available when the forecasts Êtyt+1 are formed, and the

information set is represented by (1, yt−1, e
′
t).

10 The model is written as

ŷt = α+ B̂Etŷt+1 + δ̂ŷt−1 + κ̂ et, (21)

where ŷt=[xt, πt, π
w
t , wt]′, α = wnt , et=[rt

n, ut]′, and matrices B̂, δ̂, and κ̂ are
defined as in Appendix A.

The MSV solution takes the form of Eq. (9).11 Equation (9) for b is charac-
terized by a matrix quadratic that could have multiple solutions. The determinate
equilibrium corresponds to the case where there is a unique solution for b with all of
its eigenvalues inside the unit circle. This paper analyzes stability under adaptive
learning of REE that are asymptotically stationary. It is possible to analyze stabil-
ity under adaptive learning of explosive solutions but here I focus on the solutions
that are asymptotically stable. The solution to matrix b was obtained using the
“trust-region-dogleg” method for systems of non-linear equations (for a detailed
description see Powell, 1970).

E-stability of the MSV solution under learning is now considered. The PLM
takes the form of the MSV solution. The mapping from PLM to ALM takes the
form of Eq. (15). To compute the E-stability conditions I use derivatives (17), (18),
and (19), where the three matrices require real parts less than 1 for E-stability. If at
least one of the eigenvalues of the matrices has a real part greater than 1, then the
equilibrium is E-unstable. After finding the MSV solution, E-stability conditions
were numerically evaluated. The results are discussed in the next subsections.

3.1.3. Determinacy and E-stability
Figure 1 plots the region of determinacy and E-stability of the MSV solution as

a function of ψπ and ψx with all the other parameter values set at baseline values,
and where ψπw takes values of 0, 0.5, 1 and, 1.5. The top left panel shows the
determinacy area for a contemporaneous data rule that responds only to output
gap and price inflation , corresponding to the BM result. A negatively sloped line
consistent with the Taylor principle emerges–modified Taylor principle boundary
hereafter. Points to the right of the line correspond to a determinate and E-stable
REE, and points to the left are indeterminate and E-unstable. The line has a
vertical intercept of ψx = κ

1−β = 2.65, where κ =
κwξp+κpξw
ξp+ξw

and a horizontal

intercept of ψπ = 1.
As the response to wage inflation increases, the modified Taylor principle bound-

ary shifts toward the origin. Thus, when the response to wage inflation takes the

10The timing convention of the information set (1, yt−1, et′) is standard in the litera-
ture, as suggested by Evans and Honkapohja (2009) review paper. It avoids simultaneity
between expectations and outcomes.

11Notice that only the lagged value of wt enters Eq. (9) under a contemporaneous data
specification of the Taylor rule.
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Figure 1: Determinacy and learnability for a model with contemporaneous data in the
policy rule. All parameters except for ψπ and ψx are set at baseline values.

value of (ψπw = 0.50), the response to price inflation must also be 0.50 in order to
induce determinacy and E-stability. In fact, determinacy and E-stability under a
contemporaneous data rule are governed by the following modified version of the
Taylor principle for a combination of wages and prices:

ψπ + ψπw +
(1− β)

κ
ψx > 1. (22)

Eq. (22) is consistent with the numerical analysis and its derivation is discussed in
Appendix A. This reformulated Taylor principle matches the determinacy condition
of Flaschel et al. (2008) and Flaschel and Franke (2009).12

In order to shed some light on the economic interpretation of this reformulated
Taylor principle, Eqs. (1) and (2) can be redefined using a particular weighted

average of wage and price inflation π̃ =
ξ−1
p πt+ξ

−1
w πwt

ξ−1
p +ξ−1

w
, as in Woodford (2003). Now

the Phillips curves reduce to:

π̃ = κ̄(Ŷt − Ŷ nt ) + βEtπ̃t+1. (23)

The coefficient κ̄ = σ−1+ω
ξ−1
p +ξ−1

w
, which is identical to κ, becomes smaller the greater

12I drew values of ψπ, ψπw , and ψx from a uniform distribution [0,10]. I recorded
whether the equilibrium was determinate and E-stable for values of ψπ + ψπw > 1. I
repeated this exercise 1 million times; in 100 percent of the cases when ψπ +ψπw > 1, the
equilibrium was determinate and E-stable.
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the degree of rigidity of either wages or prices. When only wages (prices) are sticky,
Eq. (23) becomes a Phillips curve for wages (prices). Using the methodology in
Ascari and Ropele (2009), from Eq. (23) it can be observed that each percentage
point of permanently higher weighted average of inflation leads to a long-run in-
crease in the output gap of ((1− β)/κ) percentage points. Thus the left hand side
of Eq. (22) represents the long run increase in the nominal interest rates proposed
by the policy rule (5) for each unit of permanent increase in the inflation rate. In
any case, the Phillips curve for wages is analogous to the Phillips curve for prices,
therefore, when the Taylor principle is satisfied, a departure of the private sector
expected inflation (price and/or wage) from RE value will increase the real interest
rate. The increase in the real interest rate would reduce output through Eq. (4)
leading to a reduction of inflation through Eqs. (1) and (2) or (23), under the
traditional demand channel.13

Wage stickiness has proven to be a key element that improves the empirical
fit of the model and explains the real effects of monetary policy. Incorporating
wage stickiness could potentially alter equilibrium determinacy (Ascari et al., 2011;
Carlstrom and Fuerst, 2007; and Huang et al., 2009) and E-stability conditions. I
proceed by considering whether increasing the degree of wage stickiness, represented
by decreasing ξw (going from 0.066, the value assigned in our baseline calibration,
to 0.0042 in Giannoni and Woodford, 2003), affects equilibrium determinacy and
E-stability. I find that a policy rule that responds to contemporaneous data has
analogous implications for determinacy of REE and stability under learning, regard-
less of the source of rigidity. As κ decreases (due to stickier prices or wages), the
modified Taylor principle boundary pivots downward, finding its vertical intercept
at ψx = κ

1−β , expanding the determinate and E-stability region.

3.2. Forward Expectations in the Policy Rule

3.2.1. Determinacy
The model with forward-looking expectations is composed of Eqs. (1)-(4) and

(6) for ψi = 0. The system can be reduced to four equations when I substitute Eq.
(6) into Eq. (4). The analysis follows Section 3.1.1, with matrix B defined as in
Appendix B.

Fig. 2 presents the numerical results. When the central bank responds only to
forward expectations of price inflation and the output gap in the policy rule (Case
1) the determinate equilibrium occurs when ψπ > 1, consistent with the modified

13This paper also analyzes determinacy and E-stability conditions for a Taylor rule that
is responding to contemporaneous expectations in its policy feedback rule or nowcasting:
it = ψπÊtπt + ψπw Êtπ

w
t + ψxÊtxt. Policymakers condition their policy instruments on

expected values of current wage and price inflation, and the output gap. Determinacy
and E-stability conditions are identical to the case with contemporaneous data in the
policy feedback rule under the assumption present in this paper regarding observability
of exogenous processes. I follow the conditions for determinacy and E-stability outlined
in Evans and McGough (2005a).
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Taylor principle condition, and ψx < 0.52. Under the benchmark calibration, as
the response to price (wage) inflation increases, the response to the output gap
should gradually decrease concurrently in order to yield a determinate REE–e.g.,
when ψπ = 15 (ψπw = 15), ψx < 0.38 (ψx < 0.27) ensures determinacy.

The numerical analysis matches the following boundary that divides the pa-
rameter space into determinate and indeterminate regions

ψx =
a1 + σ(κwξp + κpξw)(1− ψπ − ψπw)− 2σ(β + 1)(ψπκp + ψπwκw)

(β + 1)(2 + 2β + ξp + ξw)σ
(24)

where a1 = (2ξp + 2ξw + 2κpσ)(1 + β) + 4(β + 1)2.
This boundary is similar to Eq. (40) from BM and it has also been documented

by Gaĺı (2008) and Bernanke and Woodford (1997) for rules that respond only to
expected future price inflation and expected future output gap under price stick-
iness.14 It posits an upper bound constraint on response coefficients which shows
up in forward-looking rules that guarantees equilibrium determinacy.

In the current analysis, determinacy of equilibrium under forward looking rules
requires that (i) the central bank should respond neither too strongly nor too weakly
to price and/or wage inflation, and not too strongly to the output gap. Therefore,
the Taylor principle condition is insufficient to guarantee determinacy; adjusting
interest rates strongly in response to changes in expected inflation or the expected
output gap can lead to equilibrium fluctuations attributed to self-fulfilling expec-
tations. (ii) The central bank should also be mindful of the degrees of price and
wage stickiness prevailing in the economy when conducting its policy design. The
determinacy area is now sensitive to the degree of price and wage rigidity through
its effects on κw and κπ, along with the type of inflation (π or πw) that the central
bank chooses to target.

If κp = κw, then determinacy would not be affected by whether the central bank
decides to respond to expected future π or πw in the Taylor rule. In practice these
parameters are not necessarily equal. For example, the benchmark values used
herein are κp = 0.0191 and κw = 0.0350. Even when the quantitative differences
are not large for the calibration currently used, the results highlight the relative
roles of price and wage stickiness for policy feedback rules that respond to expected
future variables.15 If one type of stickiness was more important in practice this
would lead to even stronger implications for policy. When, for instance, wage
stickiness is higher, so that κw < κp, a policy that responds to wage inflation
has a larger determinacy region. Responding to wage inflation pivots upward the
determinacy boundary (24) and it ensures that the equilibrium is determinate even
for high values of ψπw . Thus, having a central bank that tries to demonstrate
the seriousness with which it takes its inflation target is not problematic because
responding particularly strongly to a type of inflation forecast is not conducive to
indeterminacy.

14Details on its derivation are included in Appendix B.
15This is also the case for lagged data rules, discussed later in the text.
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Under Eq. (5), wage and price inflation have symmetric contemporaneous ef-
fects on the output gap through the interest rate. However, when the central bank
responds to expected price and wage inflation as in Eq. (6), expected price infla-
tion enters directly through the interest rate and through the IS equation, while
expected wage inflation affects output only through the interest rate. Therefore,
it is not surprising that the forward looking case postulates different underlying
implications for determinacy from the contemporaneous data case.

3.2.2. E-stability
The E-stability conditions for rules with forward-looking expectations in the

policy rule are akin to the analysis in Section 3.1.2. Matrices B̂, δ̂, and κ̂ are
defined in Appendix B.16

Figure 2: Determinacy and learnability for a model with forward expectations in the
policy rule. All parameters except for ψπ and ψx are set at baseline values.

Fig. 2 plots the E-stable region of the MSV solution. The modified Taylor
principle given by Eq. (22) is sufficient to guarantee E-stability of REE. The MSV
solution is learnable even when found in the indeterminate region of the parameter
space; the converse, however, is not true.

3.3. Lagged Data in the Policy Rule

3.3.1. Determinacy
The model encompasses Eqs. (1)-(4) and (7), where Eq. (7) for ψi = 0 has

been moved one period forward and is represented in Appendix C. The matrix of
expectational variables pre-multiplies the inverse of the first (left hand) matrix from

16Only the lagged value of wt enters Eq. (10) under the forward-looking policy function.
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Eq. (C.1) resulting in Matrix B, which is the appropriate matrix for determinacy
analysis. Determinacy analysis follows Section 3.1.1.

3.3.2. Determinacy
Fig. 3 plots the determinacy region. When the central bank responds to lagged

price inflation and lagged output gap the modified Taylor principle boundary and
the determinacy boundary (24) appear. Two determinacy regions emerge: Region
1 for values of ψπ > 1 and a modest value for ψx (less than 0.52), analogous to
the determinacy region under forward expectations in the policy rule, therefore
sensitive to changes in wage stickiness.

Region 2 for values to the left of the negatively sloped line, where ψπ is at most
0.8 and 0.52 < ψx < 2.65. Determinacy in this setting posits a trade-off between
(i) a relatively large response to lagged inflation (greater than 1) and a relatively
small response to lagged output gap or (ii) a relatively large response to lagged
output gap and a relatively small response to lagged price inflation. Therefore, with
lagged data in the policy rule the Taylor principle condition is neither necessary
nor sufficient to guarantee uniqueness of equilibrium. As the combined response to
inflation increases and achieves a value greater than 1, the only determinate area
that prevails is Region 1.

3.3.3. E-stability
The model was reshaped as in Section 3.1.2. See Appendix C for matrices B̂,

δ̂, and κ̂. E-stability analysis follows Section 3.1.2.

Figure 3: Determinacy and learnability for a model with lagged data in the policy rule.
All parameters except for ψπ and ψx are set at baseline values.
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Fig. 3 shows the E-stable regions of the MSV solutions. The E-stable region of
the parameter space is analogous to determinacy Region 1. The upper-left panel
is qualitatively close to BM, but the position of the line separating the explosive
region and the determinate and E-stable region is now affected by the degree of
wage stickiness.

3.4. Policy Inertia

In the policy inertia case, the systems of equations are given by (1)-(4), and
(6) for the system with forecast data, and Eq. (7) for the system with lagged data,
and policy inertia in the monetary policy rule. The analysis of determinacy and E-
stability of the MSV solution is standard and follows Sections 2.3 and 2.4.17 As in
Bullard and Mitra (2007), analytical solutions were not obtained for the E-stability
conditions of stationary MSV solutions, however the results are discussed using the
baseline calibration values of Amato and Laubach (2004).

Figure 4: Determinacy and learnability for a model with policy inertia in the forward
looking policy rule. Parameter ψi takes on values of 0.65, 0.65 and 5, and ψπw values of
0, 0.5, and 0. All other parameters except for ψπ and ψx are set at baseline values.

Under the policy rule that responds to forward expectations and policy inertia,
the results, plotted in Fig. 4, compare quantitatively to the graphs without policy
inertia, Fig. 3, as follows: when ψi = 0.65 without any response to wage inflation
(first panel of Fig. 4 from left to right), the horizontal line that divides the pa-
rameter space shifts upward and now has an intercept of roughly 0.90 (before it
was 0.52); the determinacy and learnable area is now more prominent. The second
panel on Fig. 4 shows a further increase in the desirable area as the response to
wage inflation increases (ψπw = 0.50). Moreover, a strong response to policy iner-
tia ψi = 5 yields a an even larger determinate and E-stable region (third panel of
Fig. 4); however, the same desirable region prevails for higher values of ψπw (i.e.

17The matrices obtained when performing the determinacy and E-stability of stationary
MSV solution analyses are available upon request.
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0.50, 1.00 and 1.50). It can also be noted that active Taylor-type rules may lead to
E-stable indeterminacy under the present calibration.18

Figure 5: Determinacy and learnability for a model with policy inertia in the lagged policy
rule. Parameter ψi takes on values of 0.65, 0.65, and 5, and ψπw values of 0, 0.5 and 0.
All other parameters except for ψπ and ψx are set at baseline values.

When the policy rule responds to lagged data and policy inertia, results repre-
sented in Fig. 5, the determinate and E-stable areas are similar to the three panels
of Fig. 4 with two important differences: An increase in the policy inertial parame-
ter ψi to 0.65 eliminates the determinate and E-unstable area previously described
as Region 2 in Section 3.3. Furthermore, the region above the desirable area is
now explosive.19 The prospect of rules that include policy inertia of yielding a de-
terminate equilibrium that is learnable is enhanced as the policymaker adjusts its
instrument in response to changes in—forecasts or lagged—price and wage inflation
under sticky prices and wages.

4. Conclusion

The study of determinacy and stability under learning with various specifica-
tions of Taylor type-rules in a model with only price rigidities was developed by
Bullard and Mitra (2002). I build on their work by considering the determinacy
and learnability conditions in a model where monopolistically competitive firms
and households set prices and wages in staggered contracts following Erceg et al.
(2000). Furthermore, I consider alternative specifications of a nominal interest rate
rule followed by the central bank that responds not only to price inflation and the

18For a further analysis on forward looking rules and stable indeterminacy with inertia
refer to Evans and McGough (2005c).

19The previous exercise was also conducted using parameter values from Bullard and
Mitra (2007) and we obtain analogous results; (i) Region 2 disappears and (ii) the hori-
zontal line that divides the parameter space shifts upward, making the determinate and
learnable region larger in the presence of sticky wages and prices.
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output gap, but also to wage inflation. The main result is twofold. First, when
the central bank responds to wage and price inflation and the output gap, a modi-
fied Taylor principle for wage and price inflation arises: The nominal interest rate
should be adjusted more than one for one with changes in (wage and/or price) infla-
tion. This Taylor principle is closely linked with stability under learning dynamics
when the central bank responds to current data and forward-looking expectations.
Furthermore, when the central bank adjusts the interest rate in response to lagged
data, the policy instrument must (i) respond moderately to changes in the output
gap and wage/price inflation and (ii) meet the modified Taylor principle condition
in order to yield stability under learning dynamics.

Second, results show that sticky wages and sticky prices have an impact on the
determinacy and E-stability areas of the parameter space. If one type of stickiness
was more important in practice this would lead to strong implications for policy
design. When, for instance, wage stickiness plays a more significant role that price
stickiness, it is preferable to target wage inflation than price inflation because such
policy yields a larger determinacy and E-stable region. In particular, it relaxes
the upper bound constraint on the central bank’s response to wage inflation nec-
essary to ensure determinacy and E-stability. Thus, having a central bank that
attempts to demonstrate the seriousness with which it takes its inflation target is
no longer an issue, because responding extremely vigorously to wage inflation is
not conducive to indeterminacy or instability under learning dynamics. This result
supports Woodford (2003) and Erceg et al. (2000) in the sense that the degree of
wage and/or price stickiness affects the monetary policy stabilization goals. They
find that in the extreme case of only sticky wages, optimal policy entails complete
stabilization of wages. In practice they advocate seeking to stabilize an appropriate
weighted average of wage and price inflation. Herein, results suggest that a central
banker concerned with avoiding indeterminacy and/or instability under learning
should consider responding to wage inflation in addition to price inflation.
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Appendix A. Contemporaneous Data in the Policy Rule

Appendix A.1. Matrix for Determinacy

The model can be simplified by substituting the policy rule (5) into (4) and writing
the system involving the endogenous variables xt, πt, π

w
t , and wt−1 given by Eqs. (1),

(2), (3), and (4) in the form of Eq. (8), reproduced here for convenience,

yt = α+BEtyt+1 + κet (A.1)

where yt=[xt, πt, π
w
t , wt−1]′, α = wnt , et=[rt

n, ut]′, and matrix B is defined as follows
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B = g.


1 σ − βσψπ −βσψπw
κp β (1 + κpσψπ + σψx + κwσψπw ) + κp (σ − βσψπ) −βκpσψπw
κw κw (σ − βσψπ) β (1 + κpσψπ + σψx)

κp − κw β + σκp + βσψx + κw (−σ + β (σψπ + σψπw )) −β (1 + σψx + κp (σψπ + σψπw ))

−ξpσψπ + ξwσψπw

σκpξwψπw + ξp (1 + σψx + κwσψπw )
−κwξpσψπ + ξw (1 + κpσψπ + σψx)

(1 + ξw) (1 + κpσψπ + σψx) + (κw + κpξw)σψπw + ξp (1 + σψx + κw (σψπ + σψπw ))

 ,

where g = 1
1+κpσψπ+σψx+κwψπw

.

The characteristic polynomial of the inverse of B is p(λ) = λ4 +a3λ
3 +a2λ

2 +a1λ+a0
where
a0 =

σ(κpψπ+κwψπw+ψx)+1

β2 ,

a1 = − ξp+ξw+β(κpσψπ+κwσψπw+2σψx+2)+σ(ψx(ξp+ξw+1)+ξwκp(ψπ+ψπw )+κw(ξp(ψπ+ψπw )+ψπw ))+κpσ(ψπ+1)+2

β2 ,

a2 =
β2(σψx+1)+ξp+ξw+β(σψx(ξp+ξw+2)+ξp+ξw+κpσψπ+κpσ+κwσψπw+4)+σ(ξwκp+κp+ξpκw)+1

β2

and
a3 = −βσψx+2β+ξp+ξw+κpσ+2

β
.

Following the analysis in Carlstrom et al. (2006) and Carlstrom and Fuerst (2007),
the modified Taylor principle for prices and wages Eq. (22) is given by p(1) < 0 where

p(1) =
(β−1)σψx(ξp+ξw)−σ(ψπ+ψπw−1)(ξwκp+ξpκw)

σ(κpψπ+κwψπw+ψx)+1
.

Appendix A.2. Matrices for Learning.

The model is written as

ŷt = α+ B̂Etŷt+1 + δ̂ŷt−1 + κ̂ et, (A.2)

where ŷt=[xt, πt, π
w
t , wt]′, α = wnt , et=[rt

n, ut]′, and matrices B̂, δ̂, and κ̂ are defined as

B̂ = f.


1 + ξp + ξw σ + σξp − βσψπ + ξw (σ − β (σψπ + ψπw )) −β

(
ψπw + ξp (σψπ + ψπw )

)
0

κwξp + κp (1 + ξw) σκp (1 + ξw) + β (1 + ξw) (1 + σψx) + κw
(
σξp + βψπw

)
β
(
ξp (1 + σψx) − κpψπw

)
0

κw
(
1 + ξp

)
+ κpξw κw

(
σ + σξp − βσψπ

)
+ ξw

(
β + σκp + βσψx

)
β
(
1 + ξp + κpσψπ + σ

(
1 + ξp

)
ψx
)

0
−κp + κw −β + σκp + βσψx + κw (−σ + β (σψπ + ψπw )) β

(
1 + σψx + κp (σψπ + ψπw )

)
0

 ,

δ̂ =



0 0 0
−2ξpσψπ+2ξwψπw

ξw(1+ξw)(1+κpσψπ+σψx)

0 0 0
2(κpξwψπw+ξp(1+σψx+κwψπw ))

ξw(1+ξw)(1+κpσψπ+σψx)

0 0 0 − 2(κwξpσψπ+ξw(1+κpσψπ+σψx))
ξw(1+ξw)(1+κpσψπ+σψx)

0 0 0
−(−1+ξw)(1+κpσψπ+σψx)+(κw−κpξw)ψπw−ξp(1+σψx+κw(σψπ+ψπw ))

ξw(1+ξw)(1+κpσψπ+σψx)


, and

κ̂ = f.


σ (1 + ξp + ξw) −κp ((1 + ξw)σψπ + ξwψπw ) + κw (ψπw + ξp (σψπ + ψπw ))

σ (κwξp + κp (1 + ξw)) (κwξp + κp (1 + ξw)) (1 + σψx)
σ (κw (1 + ξp) + κpξw) (κw (1 + ξp) + κpξw) (1 + σψx)

σ (−κp + κw) − (κp − κw) (1 + σψx)

 ,

where f = 1

(1+ξw)(1+κpσψπ+σψx)+(κw+κpξw)ψπw+ξp(1+σψx+κw(σψπ+ψπw ))
.

The E-stability analysis follows Section 2.4.

Appendix B. Forward Expectations in the Policy Rule

Appendix B.1. Matrix for Determinacy

The model with forward-looking expectations is composed of Eqs. (1)-(4) and (6).
The system can be reduced to four equations when I substitute (6) into (4). The system
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can be rewritten involving the endogenous variables xt, πt, π
w
t , and wt−1 given by Eqs.

(1), (2), (3), and (4) in the form of Eq. (A.1). Matrix B is defined here as

B =


1− σψx σ − σψπ −σψπw 0

κp (1− σψx) β + κp (σ − σψπ) −κpσψπw ξp
κw (1− σψx) κw (σ − σψπ) β − κwσψπw −ξw

(κp − κw) (1− σψx) β + (κp − κw) (σ − σψπ) −β − (κp − κw)σψπw 1 + ξp + ξw

 .

The characteristic polynomial of B is p(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 where
a0 = β2(1− σψx),
a1 = βσψx(β + ξp + ξw + 2)− β(2β + ξp + ξw + σ(κp(−ψπ) + κp − κwψπw ) + 2),
a2 = β2 + ξp + ξw + βξp + ξw − σ(κp(ψπ − 1) + κwψπw + 2ψx) + 4)− σ(ψx(ξp + ξw + 1) +
κp(ξw(ψπ + ψπw − 1) + ψπ) + κw(ξp(ψπ + ψπw − 1) + ψπw )) + κpσ + 1, and
a3 = −2β − ξp − ξw + σ(κp(ψπ − 1) + κwψπw + ψx)− 2.

With p(1) = (β − 1)σψx(ξp + ξw) − σ(ψπ + ψπw − 1)(ξwκp + ξpκw) and p(−1) =
β2(4− 2σψx)−βσψx(ξp + ξw + 4) + 2(ξp + ξw +κpσ+ 2) + 2β(ξp + ξw +σ(κp(−ψπ) +κp−
κwψπw )+4)−σ(ψx(ξp+ξw+2)+κp(ξw(ψπ+ψπw−1)+2ψπ)+ξpκw(ψπ−1)+(ξp+2)κwψπw ),
where p(1) < 0 implies (22) and p(−1) > 0 by (24).

Appendix B.2. Matrices for Learning

The model is written as in Eq. (A.2), where ŷt=[xt, πt, π
w
t , wt]′, α = wnt , et=[rt

n,

ut]′, and matrices B̂, δ̂, and κ̂ are

B̂ =


1− σψx σ − σψπ −σψπw 0

(κwξp+κp(1+ξw))(1−σψx)
1+ξp+ξw

β(1+ξw)+κwξp(σ−σψπ)+κp(1+ξw)(σ−σψπ)
1+ξp+ξw

−κp(1+ξw)σψπw+ξp(β−κwσψπw )

1+ξp+ξw
0

(κw(1+ξp)+κpξw)(1−σψx)
1+ξp+ξw

ξw(β+κp(σ−σψπ))+κw(1+ξp)(σ−σψπ)
1+ξp+ξw

β(1+ξp)−(κw(1+ξp)+κpξw)σψπw
1+ξp+ξw

0

(κp−κw)(−1+σψx)

1+ξp+ξw

−β+κw(σ−σψπ)+κp(−σ+σψπ)
1+ξp+ξw

β+κpσψπw−κwσψπw
1+ξp+ξw

0

,

δ̂ =


0 0 0 0

0 0 0
ξp

1+ξp+ξw

0 0 0 − ξw
1+ξp+ξw

0 0 0 1
1+ξp+ξw

, and κ̂ =


σ 0

σ(κwξp+κp(1+ξw))
1+ξp+ξw

κwξp+κp(1+ξw)

1+ξp+ξw
σ(κw(1+ξp)+κpξw)

1+ξp+ξw

κw(1+ξp)+κpξw
1+ξp+ξw

σ(−κp+κw)
1+ξp+ξw

−κp+κw
1+ξp+ξw

.

Determinacy analysis was completed according to Section 2.3 and E-stability analysis
conforms to Section 2.4

Appendix C. Lagged Data in the Policy Rule

Appendix C.1. Matrices for Determinacy

The model encompasses Eqs. (1)-(4) and (7), where Eq. (7) has been moved one
period forward. The system is rewritten as


1 0 0 0 σ
−κp 1 0 0 0
−κw 0 1 0 0

0 1 −1 −1 0
−ψx −ψπ −ψπw 0 0




xt
πt
πt
w

wt−1

it

 =


1 σ 0 0 0
0 β 0 ξp 0
0 0 β −ξw 0
0 0 0 −1 0
0 0 0 0 −1




Ext+1

Eπt+1

Eπwt+1

wt
it+1


(C.1)
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+


0
−ξp
ξw
0
0

wt
n +


σ 0
0 κp
0 κw
0 0
0 0


(
rt
n

ut

)
.

The matrix of expectational variables pre-multiplies the inverse of the first (left hand)
matrix from Eq. (C.1) resulting in

B = h.


0 −βψπ −βψπw
0 β − βκpψπ

κpψπ+ψx+κwψπw
−βκpψπw

0 −βκwψπ β (κpψπ + ψx)
0 β (ψx + κw (ψπ + ψπw )) −β (ψx + κp (ψπ + ψπw ))

κpψπ+ψx+κwψπw

σ
κpψπ + ψx + κwψπw + βψπ

σ
βψπw
σ

−ξpψπ + ξwψπw 1
ξpψx + (κwξp + κpξw)ψπw κp
−κwξpψπ + ξw (κpψπ + ψx) κw

(1 + ξp + ξw)ψx + κp ((1 + ξw)ψπ + ξwψπw ) + κw (ψπw + ξp (ψπ + ψπw )) κp − κw
ξpψπ−ξwψπw

σ
− 1
σ

 ,

where h = 1
κpψπ+ψx+κwψπw

.

Appendix C.2. Matrices for Learning

The model was reshaped by substituting equation (7) into equation (4) and is written

in terms of the endogenous variables xt, πt, π
w
t , and wt as in Eq. (A.2). Matrices B̂, δ̂,

and κ̂ are

B̂ =


1 σ 0 0

κwξp+κp(1+ξw)

1+ξp+ξw

β+σκwξp+βξw+σκp(1+ξw)

1+ξp+ξw

βξp
1+ξp+ξw

0
κw(1+ξp)+κpξw

1+ξp+ξw

σκw(1+ξp)+(β+σκp)ξw
1+ξp+ξw

β(1+ξp)
1+ξp+ξw

0
−κp+κw
1+ξp+ξw

−β+σκp−σκw
1+ξp+ξw

β
1+ξp+ξw

0

 ,

δ̂ =


−σψx −σψπ −σψπw 0

− (κwξp+κp(1+ξw))σψx
1+ξp+ξw

− (κwξp+κp(1+ξw))σψπ
1+ξp+ξw

− (κwξp+κp(1+ξw))σψπw
1+ξp+ξw

ξp
1+ξp+ξw

− (κw(1+ξp)+κpξw)σψx
1+ξp+ξw

− (κw(1+ξp)+κpξw)σψπ
1+ξp+ξw

− (κw(1+ξp)+κpξw)σψπw
1+ξp+ξw

− ξw
1+ξp+ξw

(κp−κw)σψx
1+ξp+ξw

(κp−κw)σψπ
1+ξp+ξw

(κp−κw)σψπw
1+ξp+ξw

1
1+ξp+ξw

 ,

and κ̂ =


σ 0

σ(κwξp+κp(1+ξw))
1+ξp+ξw

κwξp+κp(1+ξw)

1+ξp+ξw
σ(κw(1+ξp)+κpξw)

1+ξp+ξw

κw(1+ξp)+κpξw
1+ξp+ξw

σ(−κp+κw)
1+ξp+ξw

−κp+κw
1+ξp+ξw

 .

Determinacy and E-stability analyses were performed following Sections 2.3 and 2.4,
respectively.
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